rcognita.models.ModelQuadNoMixTorch
- class rcognita.models.ModelQuadNoMixTorch(dim_observation, dim_action, dim_hidden=20, weights=None, force_positive_def=False)
pytorch neural network of one layer: fully connected.
- __init__(dim_observation, dim_action, dim_hidden=20, weights=None, force_positive_def=False)
Initializes internal Module state, shared by both nn.Module and ScriptModule.
Methods
__init__(dim_observation, dim_action[, …])Initializes internal Module state, shared by both nn.Module and ScriptModule.
add_module(name, module)Adds a child module to the current module.
apply(fn)Applies
fnrecursively to every submodule (as returned by.children()) as well as self.bfloat16()Casts all floating point parameters and buffers to
bfloat16datatype.buffers([recurse])Returns an iterator over module buffers.
cache_weights()Assign the active model weights to the cached model followed by a detach.
children()Returns an iterator over immediate children modules.
cpu()Moves all model parameters and buffers to the CPU.
cuda([device])Moves all model parameters and buffers to the GPU.
detach_weights()Excludes the model’s weights from the pytorch computation graph.
double()Casts all floating point parameters and buffers to
doubledatatype.eval()Sets the module in evaluation mode.
extra_repr()Set the extra representation of the module
float()Casts all floating point parameters and buffers to
floatdatatype.forward(*args, **kwargs)Defines the computation performed at every call.
get_buffer(target)Returns the buffer given by
targetif it exists, otherwise throws an error.get_extra_state()Returns any extra state to include in the module’s state_dict.
get_parameter(target)Returns the parameter given by
targetif it exists, otherwise throws an error.get_submodule(target)Returns the submodule given by
targetif it exists, otherwise throws an error.half()Casts all floating point parameters and buffers to
halfdatatype.ipu([device])Moves all model parameters and buffers to the IPU.
load_state_dict(state_dict[, strict])Copies parameters and buffers from
state_dictinto this module and its descendants.modules()Returns an iterator over all modules in the network.
named_buffers([prefix, recurse])Returns an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself.
named_children()Returns an iterator over immediate children modules, yielding both the name of the module as well as the module itself.
named_modules([memo, prefix, remove_duplicate])Returns an iterator over all modules in the network, yielding both the name of the module as well as the module itself.
named_parameters([prefix, recurse])Returns an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself.
parameters([recurse])Returns an iterator over module parameters.
register_backward_hook(hook)Registers a backward hook on the module.
register_buffer(name, tensor[, persistent])Adds a buffer to the module.
register_forward_hook(hook)Registers a forward hook on the module.
register_forward_pre_hook(hook)Registers a forward pre-hook on the module.
register_full_backward_hook(hook)Registers a backward hook on the module.
register_load_state_dict_post_hook(hook)Registers a post hook to be run after module’s
load_state_dictis called.register_module(name, module)Alias for
add_module().register_parameter(name, param)Adds a parameter to the module.
requires_grad_([requires_grad])Change if autograd should record operations on parameters in this module.
restore_weights()Assign the weights of the cached model to the active model.
set_extra_state(state)This function is called from
load_state_dict()to handle any extra state found within the state_dict.share_memory()See
torch.Tensor.share_memory_()soft_update(tau)Soft update model parameters.
state_dict(*args[, destination, prefix, …])Returns a dictionary containing references to the whole state of the module.
to(*args, **kwargs)Moves and/or casts the parameters and buffers.
to_empty(*, device)Moves the parameters and buffers to the specified device without copying storage.
train([mode])Sets the module in training mode.
type(dst_type)Casts all parameters and buffers to
dst_type.update(weights)update_and_cache_weights([weights])weights2dict(weights_to_parse)Transform weights as a numpy array into a dictionary compatible with pytorch.
xpu([device])Moves all model parameters and buffers to the XPU.
zero_grad([set_to_none])Sets gradients of all model parameters to zero.
Attributes
T_destinationalias of TypeVar(‘T_destination’, bound=
Dict[str,Any])cacheIsolate parameters of cached model from the current model
dump_patchesmodel_name