rcognita.models

This module contains model classes. These can be used in system dynamics fitting, critic and other tasks

Updates to come.

Functions

force_positive_def(func)

Classes

LookupTable(*dims)

Model()

Blueprint of a model.

ModelBiquadForm(weights)

Bi-quadratic form.

ModelGaussianConditional([…])

Gaussian probability distribution model with weights[0] being an expectation vector and weights[1] being a covariance matrix.

ModelNN()

Class of pytorch neural network models.

ModelQuadForm([weights])

Quadratic form.

ModelQuadLin(dim_input[, weight_min, …])

Quadratic-linear model.

ModelQuadMix(dim_input[, weight_min, weight_max])

ModelQuadNoMix(dim_input[, …])

Quadratic model (no mixed terms).

ModelQuadNoMix2D(dim_input[, …])

Quadratic model (no mixed terms).

ModelQuadNoMixTorch(dim_observation, dim_action)

pytorch neural network of one layer: fully connected.

ModelQuadratic(dim_input[, …])

Quadratic model.

ModelQuadraticSquared(dim_input[, …])

Quadratic model.

ModelSS(A, B, C, D, initial_guessest)

ModelWeightContainer(dim_output[, weights_init])

Trivial model, which is typically used in actor in which actions are being optimized directly.