rcognita.models.ModelGaussianConditional
- class rcognita.models.ModelGaussianConditional(expectation_function=None, arg_condition=None, weights=None, jitter=1e-06)
Gaussian probability distribution model with weights[0] being an expectation vector and weights[1] being a covariance matrix. The expectation vector can optionally be generated
- __init__(expectation_function=None, arg_condition=None, weights=None, jitter=1e-06)
Initialize self. See help(type(self)) for accurate signature.
Methods
__init__([expectation_function, …])Initialize self.
cache_weights([weights])compute_gradient(argin)forward(*args[, weights])restore_weights()Assign the weights of the cached model to the active model.
sample_from_distribution(argin)update(new_weights)update_and_cache_weights(weights)update_covariance()update_expectation(arg_condition)update_weights(weights)Attributes
model_name